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Based slides on material from and images from: 

Artificial Intelligence, a modern approach, Stuart 
Russell and Peter Norvig. 

Deep Learning, Ian Goodfellow and Yoshua Bengio 
and Aaron Courville. http://www.deeplearningbook.org 

Python Machine Learning - Sebastian Raschka 

www.machinelearningmastery.com
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Prerequisites  

Linear Algebra 

Mathematical optimisation 

General programming, preferably Python
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Lecture 1 

Introduce ML 

Supervised vs unsupervised learning. 

Linear regression example 

Neurons 

Motivating Deep learning
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Lecture 2 

Deep learning 

XOR example 

Forward feed 

Backfitting 

Learning vs pure optimization 

CNN
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Lecture 3 

Real life applications / Current research 

Start discussing labs
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Lecture 1
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Introduction
Even the ancient Greeces dreamt of thinking machines 

They were thinking fully alive automatons. Now we are 
thinking of making use of our programmable computers. 

Artificial intelligence (AI) is a huge field  

Trying to develop software to automate “simple” labour 

Speech and image recognition 

8



Introduction
Initially computers were used 
to solve complicated for 
humans but straight forward 
mathematical problems. 

Challenge now is 
understanding the softer 
issues, easy/intuitive for 
humans such as recognising 
“hidden images” or dialects. 
https://www.moillusions.com/wp-content/uploads/2007/06/
hiddenman-580x504.jpg
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Introduction
The present solution is to allow computers to learn from experience and 
to understand things as concepts with each concept defined in relation 
to simpler concepts.  

From this, using layers of layers of layers of concepts we get the 
approach of AI deep learning. 

By gathering knowledge from experiences there is a method that avoids 
the need for humans to formally specify all of the needed knowledge. 

Imagine how any program with enough if statements could be 
considered intelligent. 
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Introduction
Many early AI projects, for instance deep 
blue (Chess) did not know anything about 
the “world”. 

Chess can be completely described with a 
short list of formal rules. 

Similar thing with GO!  

We want to move away from this box and 
go to things closer to human life. 

Requiring information, knowledge and 
intuition. 

Also difficult to write up formally. 

Key challenge.
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Introduction
Ai needs the ability to acquire knowledge, patterns from raw data. This is known as 
Machine learning. 

Can now teach computers knowledge of the real world and make seemingly 
subjective decisions. 

Logistic regression -> Medical decision making.   

Naive Bayes, spam filtering 

Requires representation of data, each provided feature 

These methods can not understand a picture, but can understand a technical 
report. 

Pixels do not have as big a correlation. 
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Introduction
One thing to never forget is the representation.  

If the data is easily accessible, computers can collect it exponentially 
faster than having to type it in. 

Handle numbers vs strings, names vs bank id. 

Compare voice samples or use samples to estimate size of vocal cords? 

Very difficult to know a priori, identify cars by wheels or pixels? 

Is it a wheel or a shadow? 

Same at night as daytime? 
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Introduction
One solution, use machine learning 
for representation. 

Representation learning, 
unsupervised 

Think sudo inverse, get as much 
information with as simple a 
representation.  

Autoencoder, both encoder and 
decoder. 

Trained to preserve as much 
information as possible.
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Introduction
Another difficulty, many 
factors or variation in real 
world applications. 

Think we can use images 
to classify horses vs zebras 

How handle variations in 
images?  

Angle, shape, size?
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Introduction
Almost as hard to find 
representation as solving the 
problem. 

Deep learning lets us express 
difficult representations as simpler 
representations. 

However, not always needed, 
could be too complicated for what 
we are trying to do.  

Could simply need a rotation or 
mapping. 
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Introduction
Illustrating how a deep neural net 
can identify an image. 

Raw data is just pixels. Perhaps 
impossible to tackle straight away.  

Use several different simpler 
mappings in each net. 

Notation, visible and hidden layers.  

What we can “observe” vs internal 
data layers and not directly seen in 
the output.
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Introduction
First layer finds edges by 
using brightness. 

Using corners, contours can 
be found as several edges. 

Using edges, can start 
looking finding objects. 

With objects, an easier task 
to classify.
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Introduction

How different parts 
relate to each other.  

Difference between 
models and planning. 

Shaded boxes are 
where we learn from 
data.
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ML vs Ai - http://www.deeplearningbook.org
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Don’t forget
Logistic Regression (LR) is classified under Machine Learning (ML). One should not use Deep 
Learning (DL) for every possible problem.  

Don’t use Machine Learning (ML) or Deep Learning (DL) if you can write a simple program to 
solve the problem: Using ML or DL for such a problem will be inaccurate or very inefficient 

Always start with simple models before moving to complex once: Complex models have too 
many free parameters. It is very difficult to know how they will behave in unexplored cases. 

Don’t use DL if the problem is simple or if you get sufficient accuracy with a ML model: DL 
models are complex. Using DL for a simple problem is an overkill, the model will be inefficient 

Don’t use DL if you have small amount of data: You can’t train a DL model with small amount of 
data. The results will be really bad. 

Best situation is a lot of data with few very distinct parameters. 

This is not a magical method that solvs all problems.
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Practically

A machine learning algorithm is an algorithm that is 
able to learn from data. 

But what do we mean by learning? 

“A computer program is said to learn from experience 
E with respect to some class of tasks T and 
performance measure P, if its performance at tasks in 
T, as measured by P, improves with experience E.”

22



Task T
Classification (With missing input) 

Regression 

Transcription (Find structure in text) 

Machine translation 

Parsing 

Anomaly detection 

Generators/Predictions of missing values/Denoising 

Density estimators
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Performance P
Measure accuracy, proportion of examples of correct 
output vs incorrect.  

Can also output error rate as 0-1 loss.  

However all this needs to be performed on data that the 
algorithm was not trained on to give a good estimate. 

Can be quite difficult choosing the right performance 
index in some cases. 
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Experience E

Unsupervised vs Supervised 

Want to find clusters, unknown patterns. 

Known pattern, want to classify.
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How do we do it?
Splitting data into 
Training, Testing and 
“Real”. 

Training used for the 
algorithm 

Testing to evaluate  

“Real” is yet unclassified 
data 
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Have the notes in the slides as well

Hopefully you now have an idea of the background 
Lets move on to an example: 

Learning linear regression on the board

27



Linear regression is a very simple and limited example 
of ML 

It shows the how an algorithm can work and shows the 
basic principles. 

It also shows fundamentally what ML actually is.
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Task: Given a vector (position of our points) x, predict 
output y on the form : 

Where w is our fitting parameters. Think of them 
weighing features w.r.t. predictions. 

How do we evaluate performance? In this example, 
evaluate the test set using MeanSquaredError:

ypred = ~w

T
~x

MSEtest =
1

m
| ~ytest

pred � ~ytest|2
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In our example we can simply derive our best W, only on 
train data. 

This may not seem like learning, but it is! Learn about w.

rW MSEtrain = 0

! rW
1

m
|Xtrain � ytrain| = 0

! rW
1

m
|ytrain

pred � ytrainMSEtrain = 0

! rW (wT XT
trainXtrainw � 2wT XT

trainytrain + yT
trainytrain) = 0

! 2XT
trainXtrainw � 2XT

trainytrain = 0

! w = (XT
trainXtrain)�1XT

trainytrain
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We have to assume training error is expected test error.  

Assume this by assuming sampling from the same set. 

Have to ensure that they are both large enough 
samples. 

Thus minimising MSE train should be the same as 
minimising MSE test.
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This leads to two different problems, underfitting and 
overfitting. 

Essentially the gap between training and test error. 

Relating to our example, limit the order of the equation.  

Remember any linear curve fitting you’ve ever done.
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A big problem in ML when is trying to work with to few 
data points. 

Easiest solution is to preprocess the data, combine 
features. 

Too many data points, could be missing a feature, 
some underlaying assumption/variable.
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Logistical regression, y = 1 if <      from our line given 
some w. 

How do we improve? Stochastic Gradient Descent 

Normal optimisation method, think Newton-Ralphson 

Step depending on derivative of error loss function.
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How improve data from test? 

In general, total error is J for a parameter theta 

For an example loss function  

Could also be our MSE.
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J(✓) = E

x,y p̂dataL(x, y, ✓) =
1

m

mX

i=1

L(x(i)
, y

(i)
, ✓)

L(x, y, ✓) = �logp(y|x; ✓)



Thus, derive wrt W or theta. 

In our fixed mini batch M’, assuming it is representativ 
of M. 

Improve parameter theta by stepping with some size e
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Neurons
For some input x 

Create Z with weight W as Z 
=W^T*Z 

Return 1 if Z> U 

Else return 0 or -1 

U is the threshold 

Usually implemented with the 
heavy side function.
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Neurons
Can put these in a chain 

Can throw the threshold into w0 = -U and x0 = 1 

Steps: 

Initialize all the weights to 0 or small random numbers 

For each sample x, Compute output value \hat{y}, update the weights 
given expected y. 

eta is the learning rate, some value in range {0,1}

wj = wj + ⌘(y(i) � ŷ

(i))x(i)
j
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Perceptrons
Find some features 

Our example quite 
simple, only one feature. 
one layer. 

Either “fire” or doesn’t.  

Will walk through a 
simple code version.

39



Based on Python Machine Learning - Sebastian Raschka

Example of perceptron with data. 
You will implement this for the iris data set
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Deep learning

What happens if we set several neurons after each 
other? 

Good place to stop for today.
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Otherwise just approach me at any time or send me an email. 
p.hallsjo.1@research.gla.ac.uk

Any questions?
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End lecture 1
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Lecture 2
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Lecture 2 

Deep learning 

Forward feed 

XOR example 

Universal approximation 

Back-propagation 

Learning vs pure optimization 

CNN
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See more in for instance the deep learning book.

I will not talk about optimisation. 
Too problem specific, will just give an overview and 

how to use it.

47



Deep learning

Deep learning lets us express difficult representations 
as simpler representations. 

Goal is approximate a function f which maps input x to 
a category y given parameters m (theta) 

Networks, given that often we have f(g(h(x))). The chain 
is denoted depth.
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Deep learning
Deep feedforward networks, same as multilayer preceptrons. Several of 
what we used in last lecture. 

Hidden layers since can not directly see output due to layer. 

Feedforward, information flows through the function being evaluated from 
x, through the intermediate computations used to define f, and finally to 
the output y.  

There are no feedback connections in which outputs of the model are fed 
back into itself.  

When feedforward neural networks are extended to include feedback 
connections, they are called recurrent neural network.
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Deep learning
Finally, these networks are called neural because they are loosely 
inspired by neuroscience.  

Each hidden layer of the network is typically vector-valued.  

The dimensionality of these hidden layers determines the width of 
the model.  

Each element of the vector may be interpreted as playing a role 
analogous to a neuron.  

Rather than thinking of the layer as representing a single vector-to-
vector function
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Deep learning
We can also think of the layer as consisting of many units that act in parallel, each 
representing a vector-to-scalar function.  

Each unit resembles a neuron in the sense that it receives input from many other units and 
computes its own activation value. Analogy with neuroscience.  

The choice of the functions f(i)(x) used to compute these representations is also loosely 
guided by neuroscientific observations about the functions that biological neurons 
compute.  

However, modern neural network research is guided by many mathematical and 
engineering disciplines, and the goal of neural networks is not to perfectly model the brain.  

It is best to think of feedforward networks as function approximation machines that are 
designed to achieve statistical generalization, occasionally drawing some insights from 
what we know about the brain, rather than as models of brain function.
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Deep learning
One way to understand feedforward networks is to begin 
with linear models and consider how to overcome their 
limitations.  

Linear models, such as logistic regression and linear 
regression, are appealing because they may be fit efficiently 
and reliably. 

Linear models also have the obvious defect that the model 
capacity is limited to linear functions, so the model cannot 
understand the interaction between any two input variables. 
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Deep learning

Think of a linear model, but being extended to apply 
the model to not x, but f(x) where f(x) is just a mapping. 

Many initial methods did this. Choose a generic f, if it 
has high enough dimension it can fit the training set. 
But generalisation is poor. 

Often manually generate f, requires human effort. 
Before deep learning.
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Deep learning
Deep learning aims to learn this initial y=f(x;θ,w)= 
ɸ(x;θ)w mapping. 

Use θ and learn ɸ from a broad class of functions, have 
w for mapping. 

This is an example of a deep feedforward network with 
ɸ as a hidden layer. 

One of many approaches, more benefits than difficulties.
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Deep learning

Parametrise ɸ(x;θ) and use optimisation to find θ for a 
good representation. 

Use a broad family of functions, ɸ(x;θ), to make the 
approach generic. 

Gives us the advantage that it is simpler to fine a family 
of functions than precisely the right function.
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Have the notes in the slides as well

XOR example
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Example

Definitely not linear 

XOR image from  

http://
www.vlsiinterviewquesti
ons.org/wp-content/
uploads/2012/04/xor.jpg
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Take loss function J = 1/4 MSE(m) 

f(x,w,b) = x^T w + b, does not work 

Choose y = f(h,w,b), with h = g(x^T W + c)  

Default recommendation, use the max function.  

This activation function is the default activation function 
recommended for use with most feedforward neural 
networks 
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Close to linear, but lets us move to nonlinearity. 

Thus, our network is taken as: 

y=f(x;W,c,w,b) = w^T max{0,W^t x +c } + b 

Thus our m is composed of W,c,w,b and will need to 
be trained through J.
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Could work through, should start with random values 

For XOR, take W = [ 1 1 ; 1 1], c = [0 ; 1], w = [1, -2] and 
b =0 

Let walkthrough for binary input: X = [0 0 ; 0 1 ; 1 0 ; 1 1] 

If not good, could use our normal gradient decent for all 
m variables, W, c, w, b 

Minimise all of the derivatives. 

Bonus, have developed xor model for non binary input!
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Gradient decent
As we can see, designing and training a neural net is not 
much different from any other method using gradient 
decent. 

It requires an optimisation, cost function and a model family. 

The largest difference between linear models and neural 
networks  

Nonlinearity of a neural network causes most interesting 
loss functions to become non-convex.  
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Gradient decent
This means that neural networks are usually trained by using iterative, gradient-
based optimisers that merely drive the cost function to a very low value.  

Compare to linear equation solvers used to train linear regression models or the 
convex optimisation algorithms with global convergence guarantees used to 
train logistic regression or SVMs.  

Convex optimisation converges starting from any initial parameters (in theory—
in practice it is very robust but can encounter numerical problems).  

Stochastic gradient descent applied to non-convex loss functions has no such 
convergence guarantee, and is sensitive to the values of the initial parameters.  

For feedforward neural networks, it is important to initialise all weights to small 
random values. The biases may be initialised to zero or to small positive values.
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Gradient decent
For the moment, it suffices to understand that the training 
algorithm is almost always based on using the gradient to 
descend the cost function in one way or another. 

Linear models can also be trained with gradient decent 

Common when the training set is large. 

Training a neural network is not much different, but 
gradient computation is more complex. 
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Hidden units
The design of hidden units is an extremely active area of research and does 
not yet have many definitive guiding theoretical principles.  

Rectified linear units (RLUs) are an excellent default choice of hidden unit.  

Examples are the max(0,x) function 

Many other types of hidden units are available. Essentially anything that goes 
from -1 to 1, tanh(x) 

It is usually impossible to predict in advance which will work best.  

The design process consists of trial and error, intuiting that a kind of hidden 
unit may work well, and then training a network with that kind of hidden unit 
and evaluating its performance on a validation set. 
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Hidden units
Hidden units do not, as you may assume be differentiable at all input points.  

For example, the rectified linear function g (z) = max{0, z} is not differentiable 
at z = 0.  

This may seem like it invalidates g for use with a gradient- based learning 
algorithm.  

In practice, gradient descent still performs well enough for these models to 
be used for machine learning tasks.  

This is in part because neural network training algorithms do not usually 
arrive at a local minimum of the cost function, but instead merely reduce its 
value significantly.
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Hidden units
Because we do not expect training to actually reach a point 
where the gradient is 0, it is acceptable for the minima of the 
cost function to correspond to points with undefined gradient.  

A function is differentiable at z only if both the left derivative and 
the right derivative are defined and equal to each other.  

The functions used in the context of neural networks usually 
have defined left derivatives and defined right derivatives.  

In the case of g(z) = max{0, z}, the left derivative at z = 0 is 0 
and the right derivative is 1. 
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Hidden units
Software implementations of neural network training usually return one of the one-
sided derivatives rather than reporting that the derivative is undefined or raising an 
error.  

This may be heuristically justified by observing that gradient-based optimisation on a 
digital computer is subject to numerical error anyway. 

The important point is that in practice one can safely disregard the non-
differentiability of the hidden unit 

Deeper networks often are able to use far fewer units per layer and far fewer 
parameters and often generalise to the test set, but are also often harder to optimise.  

The ideal network architecture for a task must be found via experimentation guided 
by monitoring the validation set error.
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Universal approximation
A linear model, mapping from features to outputs via matrix multiplication, 
can by definition represent only linear functions.  

It has the advantage of being easy to train because many loss functions 
result in convex optimisation problems when applied to linear models.  

Unfortunately, we often want to learn nonlinear functions.  

At first glance, we might presume that learning a nonlinear function 
requires designing a specialised model family for the kind of nonlinearity 
we want to learn.  

Fortunately, feedforward networks with hidden layers provide a universal 
approximation framework. 
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Universal approximation
Specifically, the universal approximation theorem states that a 
feedforward network with a linear output layer and at least one 
hidden layer with any activation function can approximate any 
Borel measurable function from one finite-dimensional space to 
another with any desired non-zero amount of error, provided 
that the network is given enough hidden units.   

This also holds for the derivatives. 

Any continuous function on a closed and bounded subset of Rn 

is Borel measurable and therefore may be approximated by a 
neural network. 
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Universal approximation
A neural network may also approximate any function mapping 
from any finite dimensional discrete space to another.  

Universal approximation theorems have also been proved for a 
wider class of activation functions, even RLUs 

The universal approximation theorem means that regardless of 
what function we are trying to learn, we know that a large MLP 
will be able to represent this function.  

This does not guarantee that the algorithm can learn the 
function, only represent.
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Universal approximation
Even if the MLP is able to represent the function, learning can fail for two different reasons.  

The optimisation algorithm used for training may not be able to find the value of the 
parameters that corresponds to the desired function.  

We get the same issues in neural net optimisation as any other optimisation problem, local 
minima, saddle points etc.  

The training algorithm might choose the wrong function due to overfitting.  

There is no free lunch, there is no universally superior machine learning algorithm. 

Feedforward networks provide a universal system for representing functions, in the sense 
that, given a function, there exists a feedforward network that approximates the function.  

There is no universal procedure for examining a training set of specific examples and 
choosing a function that will generalise to points not in the training set. 
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Universal approximation
The universal approximation theorem says that there exists a network large 
enough to achieve any degree of accuracy we desire, but the theorem does 
not say how large this network will be. 

Unfortunately, in the worse case, an exponential number of hidden units may 
be required.  

In summary, a feedforward network with a single layer is sufficient to 
represent any function, but the layer may be infeasibly large and may fail to 
learn and generalise correctly. 

In many circumstances, using deeper models can reduce the number of 
units required to represent the desired function and can reduce the amount 
of generalisation error. 
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Back-propagation
Feels more intuitive to use the cost to calculate the derivative directly. 

In essence, we use the chain rule to traverse our whole network. 

When we use a feedforward neural network to accept an input x and 
produce an output y, information flows forward through the network.  

The inputs x provide the initial information that then propagates up to 
the hidden units at each layer and finally produces y.  

During training, forward propagation can continue onward until it 
produces a scalar cost J(θ). 
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Back-propagation
The back-propagation algorithm allows the information from the cost to then flow 
backwards through the network, in order to compute the gradient.  

Computing an analytical expression for the gradient is straightforward, but 
numerically evaluating such an expression can be computationally expensive.  

The back-propagation algorithm does so using a simple and inexpensive 
procedure.  

Back-propagation refers only to the method for computing the gradient, while 
another algorithm, such as stochastic gradient descent, is used to perform 
learning using this gradient.  

Furthermore, back-propagation is often misunderstood as being specific to multi- 
layer neural networks, but in principle it can compute derivatives of any function.
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Back-propagation
Specifically, we will describe how to compute the gradient ∇x f( x, y) for an 
arbitrary function f , where x is a set of variables whose derivatives are 
desired, and y is an additional set of variables that are inputs to the function 
but whose derivatives are not required.  

In learning algorithms, the gradient we most often require is the gradient of 
the cost function with respect to the parameters, ∇J(θ). 

Many machine learning tasks involve computing other derivatives, either as 
part of the learning process, or to analyse the learned model.  

The back-propagation algorithm can be applied to these tasks as well, and 
is not restricted to computing the gradient of the cost function with respect 
to the parameters.
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Back-propagation
The back-propagation algorithm is very simple. 
To compute the gradient of some scalar z with 
respect to one of its ancestors x in the graph, 
we begin by observing that the gradient with 
respect to z is 1.  

We can then compute the gradient with respect 
to each parent of z in the graph by multiplying 
the current gradient by the Jacobian of the 
operation that produced z.  

We continue multiplying by Jacobians traveling 
backwards through the graph in this way until 
we reach x. 

For any node that may be reached by going 
backwards from z through two or more paths, 
we simply sum the gradients arriving from 
different paths at that node.
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Summary
From this point of view, the modern feedforward network is the culmination of centuries of progress on the general 
function approximation task.  

Following the success of back-propagation, neural network research gained popularity and reached a peak in the early 
1990s. Afterwards, other machine learning techniques became more popular until the modern deep learning 
renaissance that began in 2006.  

The core ideas behind modern feedforward networks have not changed substantially since the 1980s. The same back-
propagation algorithm and the same approaches to gradient descent are still in use.  

Most of the improvement in neural network performance from 1986 to 2015 can be attributed to two factors.  

First, larger datasets have reduced the degree to which statistical generalisation is a challenge for neural networks.  

Second, neural networks have become much larger, due to more powerful computers, and better software 
infrastructure. However, a small number of algorithmic changes have improved the performance of neural networks 
noticeably.  

One of these algorithmic changes was the replacement of mean squared error with the cross-entropy family of loss 
functions. Mean squared error was popular in the 1980s and 1990s, but was gradually replaced by cross-entropy losses 
and the principle of maximum likelihood as ideas spread between the statistics community and the machine learning 
community.
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Optimisation vs training 
Optimisation algorithms used for training of deep models differ from normal 
optimisation. 

Machine learning usually acts indirectly.  

In most machine learning scenarios, we care about some performance measure P, 
that is defined with respect to the test set. 

We therefore optimise P only indirectly. We reduce a different cost function J(θ) in 
the hope that doing so will improve P. 

This is in contrast to pure optimisation, where minimising J is a goal in and of itself.  

Optimisation algorithms for training deep models also typically include some 
specialisation on the specific structure of machine learning objective functions.
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Convolutional Networks, 
CNN 

Convolutional neural networks or CNNs. 

Specialised kind of neural network for 
processing data with a, grid-like topology.  

Time-series data, 1D grid taking samples at 
regular time intervals 

Image data, a 2D grid of pixels.  

Convolutional networks have been 
tremendously successful in practical 
applications.  

Convolutional networks are simply neural 
networks that use convolution in place of 
general matrix multiplication in at least one 
of their layers. 
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CNN
Convolution leverages three important ideas that can help 
improve a machine learning system: sparse interactions, 
parameter sharing and equivalent representations.  

Moreover, convolution provides a means for working with 
inputs of variable size.  

Traditional neural network layers use matrix multiplication 
by a matrix of parameters with a separate parameter 
describing the interaction between each input unit and 
each output unit.  

This means every output unit interacts with every input 
unit. 

Convolutional networks, however, typically have sparse 
interactions This is accomplished by making the kernel 
smaller than the input.  

For example, when processing an image, the input image 
might have thousands or millions of pixels, but we can 
detect small, meaningful features such as edges with 
kernels that occupy only tens or hundreds of pixels. 
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CNN
Store fewer parameters, which both reduces the 
memory requirements of the model and improves 
its statistical efficiency.  

It also means that computing the output requires 
fewer operations.  

These improvements in efficiency are usually quite 
large 

For many practical applications, it is possible to 
obtain good performance on the machine learning 
task while keeping several orders of magnitude 
less data. 

This allows the network to efficiently describe 
complicated interactions between many variables 
by constructing such interactions from simple 
building blocks that each describe only sparse 
interactions. 
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Otherwise just approach me at any time or send me an email. 
p.hallsjo.1@research.gla.ac.uk

Any questions?
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End lecture 2
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Lecture 3
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Lecture 3 

Real life applications / Current research 

Start discussing labs
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Bootstrap aggregating
Bagging, bootstrap 
aggregating 

Reduces generalisation 
errors. Combine several 
methods. 

Train several models 
separately, then 
combine for final result.
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Adversarial training
In many cases, neural networks have begun to reach 
human performance. 

Wonder whether these models have obtained a true 
human-level understanding of these tasks.  

In order to probe the level of understanding a network has 
of the underlying task, we can search for examples that the 
model misclassifies. 

Neural networks that perform at human level accuracy 
have a nearly 100% error rate on examples that are 
intentionally constructed by using an optimisation 
procedure, seen in figure. 

Adversarial examples have many implications, for example, 
in computer security.  

However, they are interesting in the context of 
regularisation because one can reduce the error rate on the 
original i.i.d. test set via adversarial training. 

Adversarial training discourages this highly sensitive locally 
linear behaviour by encouraging the network to be locally 
constant in the neighbourhood of the training data.
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Online applications

Give some specific problems and solutions, computer 
vision. 

How do we deal with images? Pixel by pixel. Neural 
nets give images. 

Great link 

http://playground.tensorflow.org/
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Online applications

ConvNetJS is a Javascript library for training Deep 
Learning models (Neural Networks) entirely in your 
browser. Open a tab and you're training. No software 
requirements, no compilers, no installations, no GPUs, 
no sweat. 

https://cs.stanford.edu/people/karpathy/convnetjs/
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Online applications
How do we apply our knowledge to time series? One 
good tutorial for how to do it in tensorflow. 

https://mapr.com/blog/deep-learning-tensorflow/ 

https://en.wikipedia.org/wiki/
Autoregressive_integrated_moving_average 

https://www.analyticsvidhya.com/blog/2016/02/time-
series-forecasting-codes-python/
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Online applications

https://www.kaggle.com/patha325/titanic-data-
science-solutions 

https://www.kaggle.com/patha325
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Predicting human pose in 3D using any camera

https://youtu.be/l_owi316cE8
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Youtube series, discussing ML.

https://youtu.be/aircAruvnKk 
Based on  

http://neuralnetworksanddeeplearning.com 
And code 

https://github.com/mnielsen/neural-networks-and-
deep-learning
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Apply neutral nets to Super Mario

https://youtu.be/qv6UVOQ0F44
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Lab information
Lab1 

Perceptron Simple and elegant use of a ML algorithm. Getting into writing own 
implementations in python. Using sklearn. Quite free form using the tools and 
understanding them. 

In tensorflow, use image analysis and understand how difficult noise can be. 

Lab2 

Free form translation. Build a translator and translate “My hovercraft is full of eels” 
and “Can you direct me to the station?” from English to Hungarian or to German. 
Use any resources, can for instance find a dictionary at: http://
www.manythings.org/anki/ 

I will add details to help you though the latter, there are many resources online.
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Further resources
http://www.ppe.gla.ac.uk/~phallsjo/files/CardiffSTFC/ 

http://tmva.sourceforge.net - Particle physics 

https://www.kaggle.com 

https://www.openml.org 

https://www.tensorflow.org/tutorials/ 

http://cv-tricks.com/tensorflow-tutorial/training-convolutional-neural-network-for-image-
classification/ 

https://medium.freecodecamp.org/every-single-machine-learning-course-on-the-internet-
ranked-by-your-reviews-3c4a7b8026c0 

https://github.com/josephmisiti/awesome-machine-learning 

https://github.com/josephmisiti/awesome-machine-learning/blob/master/books.md
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Further resources
http://cs231n.github.io/classification/ - Stanford lecture 

http://www.mit.edu/~rakhlin/6.883/ - MIT Online Methods in 
Machine Learning 

EDX: 

https://www.edx.org/course/applied-machine-learning-
microsoft-dat203-3x-3 

https://www.edx.org/course/principles-machine-learning-
microsoft-dat203-2x-5
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Further resources
Coursera: 

https://www.coursera.org/learn/machine-learning/home/welcome 

https://www.coursera.org/learn/convolutional-neural-networks/home/
welcome 

https://www.coursera.org/learn/neural-networks/home/welcome 

https://www.coursera.org/learn/neural-networks-deep-learning/home/
welcome 

https://www.coursera.org/learn/python-machine-learning/home/welcome
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Further resources
CERN lecture series 

 https://indico.cern.ch/category/9320/ 

Excellent talk from google Deep Mind 

https://indico.cern.ch/event/673350/ 

https://danilorezende.com 

Deep Mind publications 

https://deepmind.com/research/publications/
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Otherwise just approach me at any time or send me an email. 
p.hallsjo.1@research.gla.ac.uk

Any questions?
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End lecture 3
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